Free Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation

Authors

  • Gh Payganeh School of Mechanical Engineering, Shahid Rajaee Teacher Training University
  • H Malek-Mohammadi School of Mechanical Engineering, Shahid Rajaee Teacher Training University
  • R Moradi-Dastjerdi Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University
Abstract:

In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The motion equations are derived using Hamilton’s energy principle and Navier’s method and is applied to solve this equation. The sandwich plates are considered simply supported and resting on a Winkler/Pasternak elastic foundation. The material properties of the functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are graded along the thickness and estimated though the Mori–Tanaka method. Effects of CNT volume fraction, geometric dimensions of sandwich plate, and elastic foundation parameters are investigated on the natural frequency of the FG-CNTRC sandwich plates.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Analysis of Viscoelastic Functionally Graded Sandwich Plates with CNT Reinforced Composite Face Sheets on Viscoelastic Foundation

In this article, bending, buckling, and free vibration of viscoelastic sandwich plate with carbon nanotubes reinforced composite facesheets and an isotropic homogeneous core on viscoelastic foundation are presented using a new first order shear deformation theory. According to this theory, the number of unknown’s parameters and governing equations are reduced and also the using of shear correct...

full text

Free Vibration and Buckling Analyses of Functionally Graded Nanocomposite Plates Reinforced by Carbon Nanotube

This paper describes the application of refined plate theory to investigate free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by aggregated carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, satisfying the zer...

full text

Static and Free Vibration Analyses of Functionally Graded Nano-composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation

In this study, static and free vibration analyses of functionally graded (FG) nanocomposite plates, reinforced by wavy single-walled carbon nanotubes (SWCNTs) resting on a Pasternak elastic foundation, were investigated based on a mesh-free method and modified first-order shear deformation theory (FSDT). Three linear types of FG nanocomposite plate distributions and a uniform distribution of wa...

full text

Mesh-free Dynamic Analyses of FGM Sandwich Plates Resting on A Pasternak Elastic Foundation

This study analyzes the free vibration, forced vibration, resonance, and stress wave propagation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dynamic analyses are conducted using a mesh-free method based on first-order shear deformation theory and the shape functions constructed using moving least squares approximation. The sandwich plates are rested on a Pastern...

full text

Static and Free Vibration Analyses of Orthotropic FGM Plates Resting on Two-Parameter Elastic Foundation by a Mesh-Free Method

In this paper, static and free vibrations behaviors of the orthotropic functionally graded material (FGM) plates resting on the two-parameter elastic foundation are analyzed by the a mesh-free method based on the first order shear deformation plate theory (FSDT). The mesh-free method is based on moving least squares (MLS) shape functions and essential boundary conditions are imposed by transfer...

full text

Bending and Free Vibration Analyses of Rectangular Laminated Composite Plates Resting on Elastic Foundation Using a Refined Shear Deformation Theory

In this paper, a closed form solution for bending and free vibration analyses of simply supported rectangular laminated composite plates is presented. The static and free vibration behavior of symmetric and antisymmetric laminates is investigated using a refined first-order shear deformation theory. The Winkler–Pasternak two-parameter model is employed to express the interaction between the lam...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  158- 172

publication date 2015-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023